Lockdown measures in response to COVID-19 in nine sub-Saharan African countries

  • Published: October 7, 2020
  • Journal:BMJ Global Health
  • Authors:Najmul Haider ,1 Abdinasir Yusuf Osman,1 Audrey Gadzekpo,2 George O Akipede,3 Danny Asogun,4 Rashid Ansumana,5 Richard John Lessells,6 Palwasha Khan,7 Muzamil Mahdi Abdel Hamid ,8 Dorothy Yeboah-Manu,9 Leonard Mboera ,10 Elizabeth Henry Shayo,11 Blandina T Mmbaga,12,13 Mark Urassa,14 David Musoke ,15 Nathan Kapata,16 Rashida Abbas Ferrand,17,18 Pascalina-Chanda Kapata,16 Florian Stigler,19 Thomas Czypionka,20,21 Alimuddin Zumla,22 Richard Kock,1 David McCoy23


Lockdown measures have been introduced worldwide to contain the transmission of COVID-19. However, the term ‘lockdown’ is not well-defined. Indeed, WHO’s reference to ‘so-called lockdown measures’ indicates the absence of a clear and universally accepted definition of the term ‘lockdown’. We propose a definition of ‘lockdown’ based on a two-by-two matrix that categorises different communicable disease measures based on whether they are compulsory or voluntary; and whether they are targeted at identifiable individuals or facilities, or whether they are applied indiscriminately to a general population or area. Using this definition, we describe the design, timing and implementation of lockdown measures in nine countries in sub-Saharan Africa: Ghana, Nigeria, South Africa, Sierra Leone, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. While there were some commonalities in the implementation of lockdown across these countries, a more notable finding was the variation in the design, timing and implementation of lockdown measures. We also found that the number of reported cases is heavily dependent on the number of tests carried out, and that testing rates ranged from 2031 to 63 928 per million population up until 7 September 2020. The reported number of COVID-19 deaths per million population also varies (0.4 to 250 up until 7 September 2020), but is generally low when compared with countries in Europe and North America. While lockdown measures may have helped inhibit community transmission, the pattern and nature of the epidemic remains unclear. However, there are signs of lockdown harming health by affecting the functioning of the health system and causing social and economic disruption Methods: The samples of this study were day zero dried blood spot samples collected from efficacy studies in the Blue Nile State from November 2015 to January 2016. A total of 130 samples were amplified and sequenced using illumina Miseq platform. The molecular markers included were Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfk13, exonuclease and artemisinin resistant (ART‐R) genetic background (Pfmdr2, ferroredoxine, Pfcrt and Pfarps10). Results:Resistance markers for chloroquine were detected in 25.8% of the samples as mutant haplotype Pfcrt 72-76 CVIET and 21.7% Pfmdr1 86Y. Pfdhfr mutations were detected in codons 51, 59 and 108. The ICNI double-mutant haplotype was the most prevalent (69%). Pfdhps mutations were detected in codons 436, 437, 540, 581 and 613. The SGEGA triple-mutant haplotype was the most prevalent (43%). In Pfdhfr/Pfdhps combined mutation, quintuple mutation ICNI/SGEGA is the most frequent one (29%). Six of the seven treatment failure samples had quintuple mutation and the seventh was quadruple. This was significantly higher from the adequately responsive group (P < 0.01). Pfk13 novel mutations were found in 7 (8.8%) samples, which were not linked to artemisinin resistance. Mutations in ART‐R genetic background genes ranged from zero to 7%. Exonuclease mutation was not detected. Conclusion: In this study, moderate resistance to chloroquine and high resistance to SP was observed. Novel mutations of Pfk13 gene not linked to treatment failure were described. There was no resistance to piperaquine the partner drug of dihydroartemisinin/piperaquine (DHA-PPQ).